Insights into transport velocity of colloid-associated plutonium relative to tritium in porous media

نویسندگان

  • Jinchuan Xie
  • Jiachun Lu
  • Jianfeng Lin
  • Xiaohua Zhou
  • Qichu Xu
  • Mei Li
  • Jihong Zhang
چکیده

Although faster transport velocities of colloid-associated actinides, bacteria, and virus than nonreactive solutes have been observed in laboratory and field experiments, some questions still need to be answered. To accurately determine the relative velocity (UPu/UT) of 239Pu and tritium representative of the bulk water, a conceptual model of electrostatic interactions coupled with the parabolic water velocity profile in pore channels is developed. Based on the expression for UPu/UT derived from this model, we study the effects of water flow rates and ionic strengths on the UPu/UT. Also, the velocity relationship between Pu, tritium and Sr2+ is explored. The results show that UPu/UT increased fairly linearly with decreasing water flow rates; UPu/UT declined approximately exponentially with increasing Na+ concentrations; the charge properties of colloid-associated Pu (negative), tritium (neutral) and Sr2+ (positive) had a close association with their transport velocities as UPu:UT:USr2+=1.41:1:0.579.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Dimensional Solute Transport with Exponential Initial Concentration Distribution and Varying Flow Velocity

The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The...

متن کامل

Axisymmetric Magnetohydrodynamic Squeezing flow of Nanofluid in Porous Media under the influence of Slip Boundary Condition

The various industrial, biological and engineering applications of flow of squeezing flow of fluid between parallel plates have been the impetus for the continued interest and generation renewed interests on the subject. As a part of the renewed interests, this paper presents the study of axisymmetric magnetohydrodynamic squeezing flow of nanofluid in porous media under the influence of slip bo...

متن کامل

Transport of microsporidium Encephalitozoon intestinales spores in sandy porous media.

The retention and transport of microsporidium Encephalitozoon intestinales spores in two water-saturated sandy porous media was investigated in this study. The initial breakthrough of the spores in the column effluent occurred essentially simultaneously with that of a non-reactive tracer, indicating no significant velocity enhancement. A large fraction (45-73%) of the spores injected into the c...

متن کامل

Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation.

A three-dimensional particle tracking model for colloid transport in porous media was developed that predicts colloid retention in porous media in the presence of an energy barrier via two mechanisms: (1) wedging of colloids within grain to grain contacts; (2) retention of colloids (without attachment) in flow stagnation zones. The model integrates forces experienced by colloids during transpor...

متن کامل

Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media

Effective use of colloid transport models for heterogeneous subsurface porous media requires the development of methodologies to identify the key model parameters. The inverse problem of a two-dimensional model for colloid transport in geochemically heterogeneous porous media is systematically investigated in this paper. Sensitivity analysis prior to the parameter identification provided valuab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014